A Guide to the Control and Management of Invasive Phragmites
A Guide to the Control and Management of INVASIVE PHRAGMITES
Partial funding for this program is supported by a Cooperative Agreement from the U.S. Department of the Interior, Fish and Wildlife Service. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government.
Table of Content

Introduction 1

<table>
<thead>
<tr>
<th>Understanding Phragmites 3</th>
<th>Control Methods 9</th>
<th>Recommended Management Strategies 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Problem 3</td>
<td>Herbicides 11</td>
<td>...for Large, Dense Stands of Phragmites on a Wet or Dry Site 24</td>
</tr>
<tr>
<td>Illustration of the nonnative phragmites plant 4</td>
<td>Table 1. Herbicide Application Information 11</td>
<td>...for Large, Dense Stands of Phragmites in Impoundments 25</td>
</tr>
<tr>
<td>Plant Description 5</td>
<td>Table 2. Herbicide Application Methods 12</td>
<td>...for Low-Density Stands of Phragmites on a Wet or Dry Site 26</td>
</tr>
<tr>
<td>Native Phragmites 5</td>
<td>Prescribed Fire 15</td>
<td>Table 3. Management Strategies 27</td>
</tr>
<tr>
<td>Life Cycle 7</td>
<td>Mechanical Treatment 17</td>
<td>Long-Term Management and Monitoring 29</td>
</tr>
<tr>
<td></td>
<td>Water Level Management “Flooding” 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Call to Action 33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List of Authors 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact Information 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference Information 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acknowledgments 37</td>
</tr>
</tbody>
</table>
Introduction

An aggressive, nonnative variety of phragmites (*Phragmites australis*), also known as common reed, is threatening the ecological health of Michigan wetlands and coastal shorelines.

This invasive variety of phragmites is becoming widespread throughout the Great Lakes and is displacing the native variety of the same species, as well as many other native plants. Near-monotypic stands of this phragmites have replaced high-quality, complex communities of native plants over thousands of acres of Michigan wetlands and coastal areas. The rapid expansion of this variety of phragmites has resulted in adverse ecological, economic and social impacts on the natural resources and people of the Great Lakes.

The goal of this guide is to provide information about effective methods to control and manage phragmites. This guide presents a compilation of techniques, based on four years of research and more than 10 years of land managers’ on-the-ground experience, to control the nonnative variety of phragmites, hereafter referred to simply as phragmites. Control of phragmites is one step toward a greater goal of restoring native wetland plant communities and protecting fish and wildlife habitat. The easiest way to control phragmites is to begin a control program as soon as it is observed on your property, before the plants become well established. In many areas, especially those with established phragmites, complete eradication may not be achievable. However, through periodic management, it is possible to maintain phragmites infestations at levels that allow for regeneration of native wetland plant communities and protection of fish and wildlife habitat.

Because this guide discusses tools that are not readily applied by the average landowner, it is intended primarily for land or resource managers from agencies, organizations, and businesses and extension agents or others in a similar position.

left: Dense stand of phragmites that has displaced native vegetation. B. Avers
The Problem
Once phragmites invades, it causes adverse ecological, economic and social impacts including:

* Threats to coastal and interior wetlands, which are Michigan’s most biologically diverse and productive ecosystems.
* Domination of native vegetation, displacing desirable native plant species such as sedges, rushes and cattails, and reduction of plant diversity.
* Reduction of wildlife habitat diversity resulting in loss of food and shelter.
* Alteration of water regime, causing “drying” of marsh soils through increased evaporation and trapping of sediments.
* Reduction of property values due to use impairment.
* Restriction of shoreline views due to tall, dense stands.
* Reduction of access for swimming, fishing and hunting.
* Creation of potentially serious fire hazard to structures due to dry biomass during the dormant season.

Understanding Phragmites

To better control and manage phragmites it is helpful to understand the physical characteristics of the plant, as well as how and when it reproduces and spreads.

In Michigan, phragmites is found growing in coastal and interior marshes, bogs, fens, swamps, lake margins, roadside ditches and other low wet areas. Typically it prefers the wetland–upland interface, though it can be found in dry uplands.

Phragmites continues to expand within Michigan, in part because it reproduces through wind dispersal of seeds and vigorous vegetative reproduction through rhizomes. Rhizomes broken by natural actions, such as waves, or man-made actions, such as dredging or disking, readily reroot in new locations. Rapid expansion also is facilitated by other disturbances that give phragmites a competitive edge, such as discharge of nutrients, wetland drainage, fire and road salt.

on page 2: Tall, dense stand of phragmites restricting views and access to water, and creating potential fire danger. J. Schafer
Illustration of the nonnative phragmites plant
[USDA NRCS plants database]

SEED HEAD PLUMES
*purple–brown–silver;
6–20 inches long and up to 8 inches broad*

FLAT, STIFF LEAVES
*0.5–2.0 inches wide near the base,
tapering to a point at the end*

RHIZOME
*horizontal, underground stem;
sends out roots and shoots from its nodes*

Nonnative (background, left; dark leaves) and native phragmites (front, right; light green leaves) at Montezuma National Wildlife Refuge, NY.
B. Blossey, Cornell University
Plant Description

Phragmites is a perennial, warm season grass that can grow in dense stands and is long living.

Plants can reach 15 feet in height, yet more than 80 percent of the yearly biomass is contained below ground in a dense mass of roots and rhizomes. Stalks support flat, stiff leaves that are 0.5–2.0 inches wide near the base, tapering to a point at the end. Phragmites has gray-green foliage during the growing season, with distinctive purple-brown-silver seed head plumes appearing by late July. These plumes form at the end of stalks, are 6–20 inches long and up to 8 inches broad, and have many branches. Phragmites turns tan in the fall and most leaves drop off, leaving only the stalk and plume-topped shoot throughout winter.

Before attempting to control phragmites it is important to be able to identify the native phragmites and other native plants that grow under similar conditions in Michigan’s coastal and interior wetlands. Field guides and other resources can be used to identify other wetland plants, and a website through Cornell University (http://www.invasiveplants.net/phragmites/phrag/morph.htm) can be used to identify native and nonnative phragmites.
Life Cycle

Phragmites reproduces through rhizomes, horizontal stems growing under the ground.

Rhizomes generate roots and stalks at regularly spaced nodes. An individual plant can multiply into a large stand through its rhizomes. Rhizomes may exceed 60 feet in length, grow more than 6 feet per year and readily grow into new plants when fragmented.

In addition to facilitating reproduction, phragmites rhizomes can penetrate the soil to a depth of more than 6 feet. This allows the plant to reach low-lying groundwater and tolerate a variety of conditions, including dry upland sites and wetlands with water depths exceeding 2 feet.

Mature plants produce as many as 2,000 seeds annually. Germination occurs in the spring, generally on exposed moist soils. Although seed viability is considered low and germination is a slower process than spreading by rhizome fragments, new stands of phragmites will develop from seed. Water depths greater than 2 inches typically prevent germination of seeds.

Effective control of phragmites hinges upon attacking the right portion of the plant at the proper times within the life cycle to slow or stop current and future growth.

left:
Approximate timing of the life cycle stages of phragmites throughout the year.
Photos: D. Avers.
Control Methods

Control programs can result in significant reduction of phragmites, but this requires commitment to an integrated approach and a long-term management strategy.

Few techniques are fully effective when used alone, and reinvasion by phragmites is likely when the management strategy is not maintained. The methods to be used for a particular site will depend upon existing conditions and management goals. Effective control of phragmites, particularly larger well-established stands, is likely to require multiple treatments using a combination of methods.

The use of herbicide treatment(s) (initial and spot treatments) is recommended as the primary control method and the first step toward effective control. After the initial herbicide treatment, one or more follow-up methods at each site will be required, such as: prescribed fire, mechanical treatment, or water level management. These follow-up methods will not only help provide multiple stresses on the plants, but also will prepare the site for subsequent years’ herbicide treatments. Creating stresses through a regime of multiple treatments on the plants is the most effective way to control phragmites.

Left: Aerial phragmites herbicide application at Nayanquing Point State Wildlife Area, Saginaw Bay, MI. D. Avers
Herbicides

Two broad-spectrum herbicides, glyphosate and imazapyr, are commercially available and known to control phragmites effectively when used properly.

These chemicals are nonselective and will enter any plant species through contact with the leaves or stems. Therefore, impacts on other native plants may occur if the product is applied incorrectly. Both herbicides are available in separate formulas for application either on aquatic (wet) or terrestrial (dry) sites.

Improper use of the terrestrial formulations in an aquatic habitat may harm fish and macroinvertebrates and is a violation of federal and state laws.

Glyphosate and imazapyr can be used individually or combined to control phragmites (Table 1). While the cost per

<table>
<thead>
<tr>
<th>Treatment Timing</th>
<th>Imazapyr</th>
<th>Glyphosate</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apply to actively growing green foliage after full leaf elongation and up to first killing frost (i.e., June up to first killing frost)</td>
<td>Apply after plants are in full bloom in late summer up to the first killing frost (i.e., late August up to first killing frost)</td>
<td>Apply after plants are in full bloom in late summer up to the first killing frost (i.e., late August up to first killing frost)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herbicide Rate</th>
<th>Imazapyr</th>
<th>Glyphosate</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Volume</td>
<td>Six pints per acre</td>
<td>Six pints per acre</td>
<td>Three pints glyphosate and three pints imazapyr per acre</td>
</tr>
<tr>
<td>Low Volume</td>
<td>1 - 1.5% solution</td>
<td>1 - 1.5% solution</td>
<td>No recommended rate is available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost</th>
<th>High</th>
<th>Low</th>
<th>Medium</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Effectiveness</th>
<th>High</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Allows treatment earlier in the growing season</td>
<td>Good results where water level management is available</td>
<td>Recommended for most sites</td>
</tr>
<tr>
<td>Method</td>
<td>Phragmites Stand Characteristics</td>
<td>Site Conditions</td>
<td>Treatment Technique</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Injecting Stems</td>
<td>Scattered or isolated</td>
<td>Effective in areas where impacts to desirable, native plant species must be avoided.</td>
<td>Cut plants to waist height. Add one drop of herbicide to hollow stems with a squirt bottle or syringe.</td>
</tr>
<tr>
<td>Hand Swiping</td>
<td>Scattered or isolated</td>
<td>Effective in areas where impacts to desirable, native plant species must be avoided.</td>
<td>Cover (wipe) each individual stem using a cotton wicking glove worn over a chemical resistant glove.</td>
</tr>
<tr>
<td>Backpack Sprayer</td>
<td>Scattered to moderately dense stands</td>
<td>Use on low-wind days to prevent drift outside the treatment area. Use carefully to avoid native plants.</td>
<td>Spray close to leaves using low pressure.</td>
</tr>
<tr>
<td>Wick or Dauber</td>
<td>Moderately dense to dense stands greater than 1 acre</td>
<td>Targets phragmites without impacting shorter plant species. Useful when complete eradication of all plants is not desired.</td>
<td>Saturate absorbent material with low pressure sprayers attached to an ATV or tractor. The area must be covered twice, in opposite directions.</td>
</tr>
<tr>
<td>Boom Sprayer</td>
<td>Dense stands greater than 1 acre</td>
<td>Use on low-wind days to prevent drift outside the treatment area. Use carefully to avoid native plants.</td>
<td>Attach low pressure boom sprayers to an ATV or tractor.</td>
</tr>
<tr>
<td>Aerial Application</td>
<td>Dense stands greater than 5 acres</td>
<td>Use on low-wind days to prevent drift outside the treatment area. Use carefully to avoid native plants.</td>
<td>Spray area from helicopter booms using proper droplet size, boom length and nozzle type.</td>
</tr>
</tbody>
</table>
-Herbicides-

gallon of imazapyr can be significantly higher than glyphosate, results from recent studies suggest that imazapyr used alone or in combination with glyphosate can control phragmites for a longer period of time (Getsinger et al., 2007). In most cases, herbicides should be used in conjunction with burning or mechanical methods, and reapplied in subsequent years to spot-treat individual plants or patches of plants that were not eliminated completely in the first application.

Numerous methods may be used to apply these herbicides depending on the size of the phragmites stand and existing site conditions, as identified in Table 2. Application rates for low-volume spot treatment methods, such as injecting stems, hand swiping, wicks and backpack spraying, are calculated by percent of solution (e.g., 2 ounces of herbicide in 1 gallon of water yields a 1.5-percent solution). Application rates for high-volume treatment methods, such as boom sprayers, hand gun and aerial applications, are calculated on a per-acre rate.

To ensure the herbicide is taken up by the plants, a state-approved nonionic surfactant must be used in conjunction with the herbicide(s) at the rate recommended on the label. Spray should be applied to wet the leaves and, when present, the flower plumes of the target plants. Excessive application, such that the chemicals are dripping off the plants, should be avoided because it is more costly, can cause increased injury to desirable nontarget species and often decreases the success of control. Visual effects, such as browning or withering of the plants, may not occur for several weeks. If the herbicide is applied close to the first killing frost, symptoms may not have time to appear before the plant dies back for the year. In this case, control effectiveness may not be determined until the following growing season.

When using herbicides, always read and follow directions on the manufacturer’s label. These directions must be followed in order to achieve legal, safe and effective treatment of phragmites. Only trained individuals should apply herbicides. Pesticide use certification, which can be obtained in Michigan through the Department of Agriculture, is required prior to the use of imazapyr and recommended prior to the use of glyphosate. Permits are required in Michigan when applying herbicide to phragmites in standing water or below the ordinary high-water mark of the Great Lakes and Lake St. Clair.
Prescribed Fire

Prescribed fire is a tool that can be used after an herbicide treatment to remove excess biomass, potentially kill any living rhizomes and promote native plant growth.

In situations where prescribed fire can be implemented it is easier to locate phragmites regrowth and spot-treat those plants with herbicides once a site has been cleared of the thick, dead stems. In situations where it can be implemented safely and effectively, prescribed fire is a cost-effective and ecologically sound tool to help control phragmites. Prescribed fire is recommended where phragmites exists in large dense stands. Use of prescribed fire without first treating with herbicides does not control phragmites, and instead may encourage rhizome growth and cause phragmites populations to become more vigorous.

Prescribed fire should be conducted the year following herbicide treatment, either in late summer (mid-July through August) or winter (January until prior to spring green-up). Both options are very effective in controlling phragmites and encouraging native plant growth.

Prescribed fire conducted in late summer as a second-year treatment following an herbicide treatment is preferred. A prescribed fire in late summer destroys seed heads, removes dead stems, and helps kill any phragmites plants that survived the initial herbicide treatment. Burning during this time frame will also provide for green-up of native plants before first frost. Late summer prescribed fires should be conducted when conditions are as dry as possible to achieve a complete burn of plants.

If it is anticipated that a prescribed fire cannot be accomplished during the summer period, then an earlier burn in the winter (January until prior to spring green-up) following an herbicide treatment is recommended. A winter burn can prepare the site for subsequent herbicide treatments and removes dead stems, allowing sunlight to stimulate new growth of many plant species. Once a site has been cleared of the thick, dead stems, it will be easier to locate phragmites regrowth and spot-treat those plants with herbicides. Be aware, however, that burning during this time frame can also stimulate growth of phragmites plants that survived the initial herbicide treatment (Getsinger et al., 2007).
Mechanical Treatment

Mechanical treatments are used most effectively following an herbicide treatment to remove dead stems and promote native plant growth. This also aids in the identification of new phragmites growth for subsequent herbicide spot treatments. When burning is not feasible, mechanical treatment is recommended.

Mechanical treatment should be limited to only those areas where phragmites is present, and should not include broad-scale mowing of other wetland vegetation.

Mechanical control of phragmites includes the use of weed whips, small mowers, brush hogs, and flail mowers or hand-cutting of stems and seed heads. The use of mechanical equipment is highly dependent on the size and wetness of the site and the density of phragmites. Weed whips or handheld cutting tools are ideal for use on wet or dry sites with low plant densities. Small mowers can be used effectively on low density sites. Larger mowers can be used on sites with a higher density of plants, but the site must be dry enough to support the weight of the mower in order to avoid soil disturbance.

If mechanical treatment methods are chosen as part of a phragmites management plan, it is critical to adhere to the following timing recommendations. Mechanical treatments should not occur until at least 2 weeks after herbicide treatment to allow plant absorption of the herbicide. To remove dead stems on dry sites after an herbicide treatment, mechanically cut the treated plants once within a period from late summer or fall until prior to spring green-up. On wet sites, mechanically cut the treated plants once when the ground is frozen to minimize soil disruption. Mowing/cutting should occur only during time frames that will avoid soil disturbance.

Once an area has been mowed or cut, thatch should be raked, bagged and disposed of in an appropriate location to prevent seed spread and to allow sunlight.
Mechanical Treatment

To reach the soil surface. This ensures that the native seed bank will have an advantage during the subsequent growing season. Use of a flail-type mower can eliminate the need for thatch removal, since it will destroy most plant parts adequately.

Under limited circumstances, for example, when isolated plants or low density stands of phragmites exist and herbicide treatment is not feasible, mechanical treatments alone may be used to reduce phragmites and encourage native plants. Cutting/ mowing in late summer/fall (September to first killing frost) appears to have the best results because it eliminates the surface biomass of the plant when it is using most of its energy for flower and seed production. Cutting/ mowing in late summer also eliminates potential disruption to the breeding and nesting seasons for most birds. If a mower is used instead of handheld tools, then the mower deck should be set to a mowing height greater than 4 inches to prevent the unintended spread of seeds or rhizomes to other areas.

Mechanical methods are not intended to create the appearance of a manicured lawn, but to allow reestablishment of native wetland vegetation. Cutting/ mowing should occur only in those areas where phragmites are present.

Mechanical methods must be used carefully to avoid stimulating growth of phragmites. Mowing alone leaves the plants' rhizomes behind. Regeneration from those rhizomes may cause an increase in stand density. Improper use of mechanical methods, such as cutting too frequently, too short, or where native plants are present, can disrupt wildlife.

Disking soil is not recommended as a mechanical control method for phragmites, since it destroys rhizomes and destroys existing native plants. Disking during the wrong time of year, cutting too deeply, or too frequently, instead of as a mechanical method, such as cutting during late summer/fall, will stimulate growth of new plants.

Equipment used to manage phragmites must be cleaned properly of all debris before it is removed from the treatment site to prevent the unintended spread of seeds or rhizomes to other areas.

Under limited circumstances, for example, when isolated plants or low density stands of phragmites exist and herbicide treatment is not feasible, mechanical treatments alone may be used to reduce phragmites and encourage native plants. Cutting/mowing in late summer/fall (September to first killing frost) appears to have the best results because it eliminates the surface biomass of the plant when it is using most of its energy for flower and seed production. Cutting/mowing in late summer also eliminates potential disruption to the breeding and nesting seasons for most birds. If a mower is used instead of handheld tools, then the mower deck should be set to a mowing height greater than 4 inches to prevent the unintended spread of seeds or rhizomes to other areas.

Mechanical methods are not intended to create the appearance of a manicured lawn, but to allow reestablishment of native wetland vegetation. Cutting/mowing should occur only in those areas where phragmites are present.

Mechanical methods must be used carefully to avoid stimulating growth of phragmites. Mowing alone leaves the plants' rhizomes behind. Regeneration from those rhizomes may cause an increase in stand density. Improper use of mechanical methods, such as cutting too frequently, too short, or where native plants are present, can disrupt wildlife.

Disking soil is not recommended as a mechanical control method for phragmites, since it destroys rhizomes and destroys existing native plants. Disking during the wrong time of year, cutting too deeply, or too frequently, instead of as a mechanical method, such as cutting during late summer/fall, will stimulate growth of new plants.

Equipment used to manage phragmites must be cleaned properly of all debris before it is removed from the treatment site to prevent the unintended spread of seeds or rhizomes to other areas.
Water Level Management
“FLOODING”

In impounded sites where water levels can be readily manipulated, phragmites can be controlled effectively through an herbicide treatment followed by prescribed burning and flooding.

Although phragmites is intolerant of persistent flooding, increasing water levels alone is not effective in controlling it.

Traditional moist soil management, in which impoundments are drawn down to produce mud flats in early summer, may encourage growth of phragmites.

If phragmites is on site or in the surrounding landscape, managers should use caution when timing drawdowns. Drawdowns should be conducted in late summer (late July) to maintain and promote native vegetation and to avoid reestablishment of phragmites.

In Michigan, a permit from the MDEQ, Land and Water Management Division, is required prior to manipulating water levels in impoundments. The permit application can be found at http://www.michigan.gov/deqwetlands.

left: Pumping station used for controlling water levels in a wetland impoundment; St. Clair Flats Wildlife Area, MI.
J. Schafer
Recommended Management Strategies

Because of the physiology of phragmites, well-established stands are difficult to control with only one herbicide treatment.

An initial herbicide treatment stresses the plants, making them particularly vulnerable to subsequent treatments. Creating multiple stresses on the plants is the most effective way to control phragmites. Herbicide treatment in conjunction with prescribed fire, mechanical treatment or flooding have proven to be effective in controlling phragmites and allowing native plants to reestablish.

Before control methods are implemented, it is important to evaluate the site properly to determine the density of phragmites within the overall stand of plants, the wetness of the site and the size of the area infested by phragmites. Using this information and recognizing that control of phragmites likely will require a long-term commitment, a comprehensive management plan can be formulated and implemented.

The following three management strategies have been developed based on past efforts to control phragmites. The three strategies provide information and steps in controlling phragmites under certain conditions. These strategies basically follow one of the three general approaches in table 3. Together these strategies and approaches to managing phragmites can be used to develop more comprehensive management plans.

left: Dead stems of phragmites the summer after an aerial herbicide treatment and natural vegetation regrowth; St. Clair Flats Wildlife Area, MI. J. Schafer
Management Strategy

for large, dense stands of phragmites on a wet or dry site

1. Treat phragmites stands with herbicide in early summer or late summer, depending upon the type of herbicide used (see Herbicides section). Wait at least two weeks to allow plant exposure to the herbicide.

2. Conduct the prescribed fire in the year following herbicide treatment either in (a) late summer (mid-July through August) or (b) winter (January until prior to spring green-up), if prescribed fire cannot be accomplished during the summer.

3. Check site the following growing season for phragmites regrowth and spot-treat with herbicide if needed.

If prescribed fire is not possible, mechanically treat wet sites when ground is frozen to minimize soil disturbance. On dry sites, mechanically cut treated plants once after an herbicide treatment beginning in late summer or fall until prior to spring green-up. Herbicide spot treatment will be needed during the next growing season.
Management Strategy
for large, dense stands of phragmites in impoundments

1. Treat phragmites stands with herbicide in late summer (late August and September), followed immediately by flooding to a minimum water depth of 6 inches. (It is not necessary to dewater the site prior to herbicide application.)

2. Allow the site to remain flooded until the next summer, and then dewater in late July.

3. Keep the site as dry as possible until mid-August, at which time use prescribed fire.

4. Immediately following the burn, flood the site to a minimum water depth of 6 inches and maintain this water depth for at least one year.

5. Check site the following growing season for phragmites regrowth and spot-treat with herbicide if needed.

If prescribed fire is not feasible for a site, it is recommended that the site be mechanically treated during the winter in a frozen condition to remove the dead plants that have persisted from the herbicide treatment.
Management Strategy

for low-density stands of phragmites on a wet or dry site

1. Treat phragmites stands with herbicide in early summer or late summer, depending upon the type of herbicide used (see Herbicides section). Wait at least 2 weeks to allow plant exposure to the herbicide.

2. Mechanically treat site beginning in late summer or fall until prior to spring green-up, or when the ground is frozen for wet sites with hand tools, weed whips or small mowers where dense stands of phragmites are present.

3. Check site the following growing season for phragmites regrowth and spot-treat with herbicide if needed.

left: Low-density stand of phragmites at St. Clair Flats State Wildlife Area, MI.
J. Schafer
Table 3. Three integrated multi-year approaches to managing Phragmites.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>APPROACH 1</th>
<th>APPROACH 2</th>
<th>APPROACH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td>herbicide treatment with imazapyr</td>
<td>mechanical treatment</td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td>herbicide treatment with glyphosate or imazapyr/glyphosate combo</td>
<td>OR</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>APPROACH 1</th>
<th>APPROACH 2</th>
<th>APPROACH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td>prescribed burn</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>prescribed burn</td>
<td>OR</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>APPROACH 1</th>
<th>APPROACH 2</th>
<th>APPROACH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Long-Term Management and Monitoring

Management of a site to control phragmites does not end with the successful implementation of one or more of the control methods described above, but rather begins with these initial steps.

Because of the pervasiveness of this species and its ability to aggressively recolonize through seed or rhizomes, long-term management and monitoring are necessary.

The control methods described above are likely to be successful in controlling phragmites for one to two years without additional action. However, phragmites typically begins to recover three years after treatment and will become reestablished if follow-up management is not implemented. After removal from a site, phragmites will continue to recolonize from remnant and neighboring populations and the existing seed bank in the soil.

Annual maintenance is essential to the success of any habitat restoration plan and should focus on selectively removing pioneer colonies of phragmites. Once areas of phragmites have been controlled (e.g., greater than 85-percent reduction), it is recommended that an annual maintenance control program be implemented. Successful long-term management plans should incorporate one or more of the control methods, including spot treatment with herbicide, mowing during the recommended time and/or use of prescribed fire. For example, annual spot treatments of pioneer colonies of phragmites with herbicides can provide up to 100-percent control of phragmites and discourage its spread, while enhancing the recovery and growth of native plants.
-Long-Term Management and Monitoring-

To reach the goal of reestablishing and restoring native wetland plant communities, controlling invasive species is a necessary step. Implementing selective control, as needed, will not only keep phragmites from reestablishing dominance, but also will pave the way for the recovery of beneficial native species of wetland vegetation. Seeding an area after phragmites control to restore native wetland communities typically is not necessary since native seeds normally are present in the soil. It is recommended that native vegetation be allowed to reestablish naturally. However, if monitoring determines that native plants are not responding, some sites may require seeding or planting using native genotypes to reach restoration goals.

Monitoring and adaptive management are integral components of a successful phragmites control plan. A detailed monitoring plan should be developed prior to implementation of control measures. Monitoring provides the data needed to determine the effectiveness of initial control efforts and the types of follow-up control methods that are necessary. Monitoring may be as simple as establishing and using fixed photo points on the site to record changes over time, or more involved, such as comparison of aerial photographs taken over time or the use of quantitative measurements and inventories of vegetation using sampling grids or transects. At a minimum, each treated site should be inspected annually during the growing season.

In the future there may be an effective biological control for phragmites, just as beetles can now be used to control purple loosestrife in certain situations. Currently there are no commercially available biological methods for the control of phragmites; however, several insects and microorganisms native to Europe are known to attack phragmites. Ongoing research at Cornell University is exploring the possibility of using these species as a means of biological control (http://invasiveplants.net).
A Call to Action

Whether the goals are to restore native plant communities and wildlife habitat or improve a lakeside view and recreational opportunities, the charge is the same—to control phragmites in coastal and interior wetlands of Michigan.

Before an agency or organization engages in efforts to control phragmites, it is important to establish realistic goals and realize that achievement of these goals will involve an ongoing commitment and an annual investment of time and resources. Agencies and organizations have the opportunity to work together and may be much more effective by pooling resources to achieve control in targeted geographic areas.

While phragmites control can involve a significant expenditure of resources, the environmental and social benefits derived from restoring native wetland communities to the coastal and interior wetlands of Michigan are even greater.

Many species—and people—benefit from wetlands: (top to bottom) recreational bird watcher; black tern, J. Schafer; fox snake, J. Schafer; king rail, endangered, USFWS. far left (page 32): Mallard ducklings, Al & Elaine Wilson
List of Authors

The following authors provided information for this guidebook:

Barbara Avers *Michigan Department of Natural Resources (MDNR), Wildlife Division*

Ray Fahlsing *MDNR, Parks and Recreation Division*

Ernest Kafcas *MDNR, Wildlife Division*

John Schafer *MDNR, Wildlife Division*

Tracy Collin *Michigan Department of Environmental Quality (MDEQ), Land and Water Management Division*

Laura Esman *MDEQ, Water Bureau*

Emily Finnell *MDEQ, Office of the Great Lakes*

Amy Lounds *MDEQ, Land and Water Management Division*

Russ Terry *Ducks Unlimited*

Jim Hazelman *U.S. Fish and Wildlife Service (USFWS)*

Jim Hudgins *USFWS*

Dr. Kurt Getsinger *U.S. Army Engineer Research and Development Center*

David Scheun *Michigan Department of Transportation*
Contact Information

For technical assistance regarding phragmites control or additional information:

Michigan Department of Environmental Quality
Water Bureau, Aquatic Nuisance Control
P.O. Box 30273
Lansing, MI 48909
517-241-7734
www.michigan.gov/deqinlandlakes
email: deq-lwm-anc@michigan.gov

Reference Information

More information on phragmites control can also be found in the following:

Control of Phragmites in a Michigan Great Lakes Marsh—Final Report—Draft,
U.S. Army Engineer Research and Development Center, Vicksburg, MS, 120 pp.

Weed Control Methods Handbook: Tools and Techniques for Use in Natural Areas
Acknowledgements

The Following Organizations Contributed to the Development of this Guidebook

Michigan Department of Natural Resources (MDNR), Wildlife Division
MDNR, Parks and Recreation Division
Michigan Department of Environmental Quality (MDEQ), Water Bureau
MDEQ, Land and Water Management Division
MDEQ, Office of the Great Lakes
Ducks Unlimited, Inc.
U.S. Fish and Wildlife Service, Michigan Private Lands Office
U.S. Army Corps of Engineers
Michigan Department of Transportation
Aquatic Ecosystem Restoration Foundation

Printing of this Publication was made Possible by Funding From

U.S. Fish and Wildlife Service, Coastal Program
St. Clair Flats Waterfowlers, Inc.
Harsens Island Waterfowl Hunters Association
Michigan Duck Hunters Association—Blue Water Chapter

Layout and Design by
J. Kleineberg, Ducks Unlimited, Great Lakes/Atlantic Regional Office